

Automated IMU-based training load monitoring in beach volleyball

Strotkötter, C.¹; Groh, B.², Prabhakar, R.¹, Kaartinen, N.³, Kern, A., Pfeiffer, M.¹

¹Johannes Gutenberg-University, Mainz; ²Ben's Consulting & Data Analytics, Hof; ³Kaasa solution GmbH, Düsseldorf

Initial situation and project goal

Optimize training and regeneration management

German Volleyball Association (DVV) \longrightarrow Need for research and development in the field of training documentation in beach volleyball, especially automated recording of training load

Due to the sandy ground surface and the structure of the game (3-contact rule, two persons per team), in beach volleyball, in addition to jumps, it is primarily short sprints, fast lateral movements, and dig movements with direct follow-up action that determine the degree of stress and load on the players (Pelzer et al., 2020).

(see also: BISp project AZ: ZMVI4-072023/18)

Identification of relevant loads

<u>Training load:</u> frequencies of basic techniques without jumping, jumping actions and defensive actions

	Basic techniques (no jumps)		Jumps		Defensive actions			
•	Set / setting	•	Jump service (Float/Top spin)	•	Reception / defense			
•	Pass (forearm, bump)	•	Attack (Smash, Cut, Poke)		(one/two arms)			
•	Service	•	Block	•	Sprints			
				•	Intensive defense (plus dig /			
					sand contact)			

Aim of the project

Development of a practical, cost-effective system for the automated monitoring of training load in beach volleyball

Concept and study setting

Technology

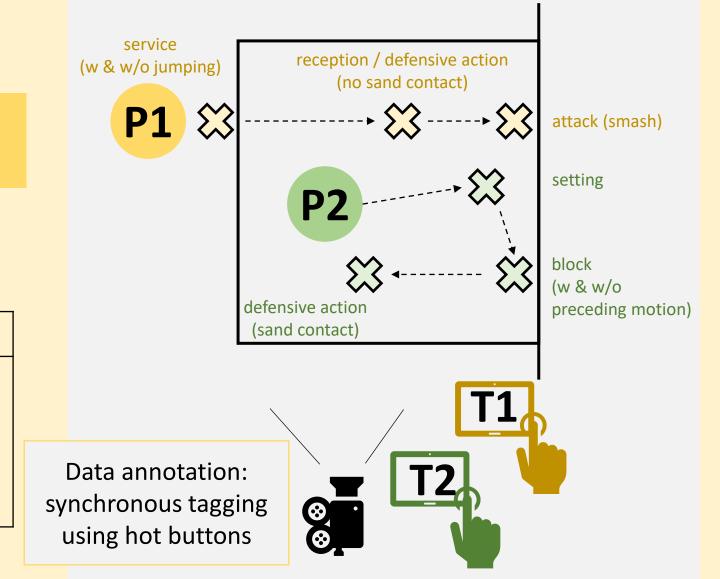
- Inertial measurement unit (IMU) from Movesense:
 36.6 x 36.6 x 10.6 mm, 10 gr., chipset: Nordic Semiconductor nRF52832) with 64 kB RAM and 512 kB FLASH memory
- 3D accelerometer (ACC, ± 16 g) and a 3D gyroscope (GYRO, ± 2000 dps)
- Recording frequency of the IMU data (ACC and GYRO): 104 Hz
- Recording software: Data Collector 2.0
 (Kaasa solution GmbH)

Data collection

Actions performed for two different positions

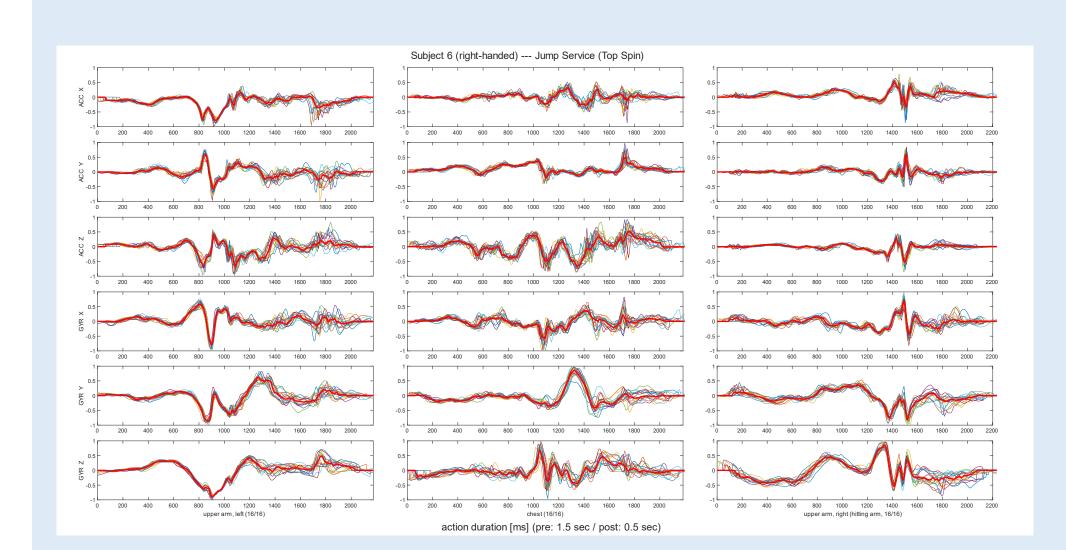
Position 1	Position 2
Service (with/without jumping)	• Set

Block (isolated/with preceding motion)
 Defense / dig with sand contact



Data organization, preparation and analysis

Organizing and visualizing



Two stage sliding window approach (0 E s

Pass (standing)

Attack (smash)

- Two-stage sliding window approach (0.5 sec)
 Stage I: suprathreshold L2-normalized values of accelerations and angular velocities of the sensor on the hitting arm (right arm).
- Stage II: suprathreshold upward rotations of the hitting arm and supporting arm

Action classification

Event detection

- 1.5 seconds before to 0.5 seconds after the annotated ball hit point / event detection
- (a) normalized feature vector classification
- Naive Bayes, kNN and C4.5 Decision Tree with statistical (min, max, mean, etc.) and specific features (e.g., rotation during the event)
- Cross-Validation (CV) and Leave-One-Subject-Out Cross-Validation (LOSO-CV) [Embedded Classification Software Toolbox (Ring et al., 2012)]
- (b) sequential neural network model [tensor flow light]70% training, 15% test, 15% validation

Model validation and system implementation

Event detection

- 1481 events detected (1040 true positive / 441 false positive)
- 1346 manually annotated actions
- Recall: 77.3% (306 false negatives) / Precision: 70.2%

Classification accuracy	Naive Bayes	kNN (k=3)	C4.5	
CV	91.7%	94.7%	85.6% 75.4%	
LOSO-CV	82.0%	79.2%		

sequential neural network model: 90.1%

Bibliography

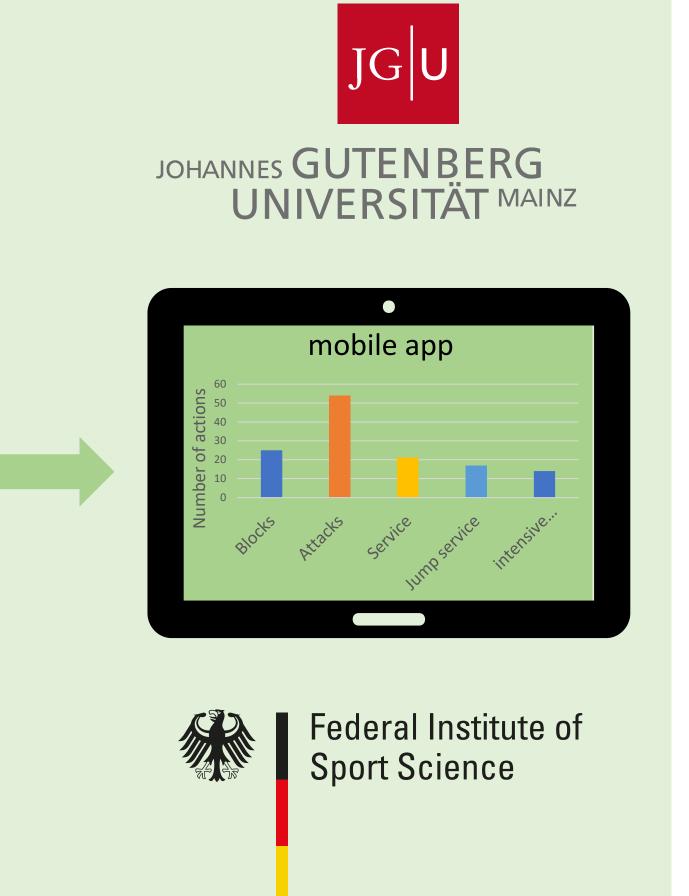
Ring, M., Jensen, U., Kugler, P. & Eskofier, B. (2012). Software-based Performance and Complexity Analysis for the Design of Embedded Classification Systems. In IEEE, *Proceedings of the 2012 21st International Conference on Pattern Recognition (ICPR)*.

Pelzer, T., Schmidt, M., Jaitner, T. & Pfeiffer, M. (2020). External training load and the effects on training response following three different training sessions in young elite beach volleyball players. *International Journal of Sports Science & Coaching*, 15(5-6), 717–727. https://doi.org/10.1177/1747954120940488

Annotated action 1300 16.6% 15.2% Accuracy Service (no jump) 99.2% Jump service (top spin) 92.1% 95.9% 95.5% Attack (Smash) 84.5% Block (isolated) Block (with pre-movement) 61.9% Defense / pass 93.8% Intensive defense (sand contact) 97.9% correctly classified 1192 91.7% misclassified 108 8.3%

Action classification

Confusion Matrix with Naive Bayes Classification and Cross Validation (CV)



Software: https://kaasa.com/

Research: christian.strotkoetter@uni-mainz.de

Data scientist: https://bens-consulting.net/